Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.038
1.
Invest Ophthalmol Vis Sci ; 65(4): 42, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38683565

Purpose: Despite strong evidence demonstrating that normal lens development requires regulation governed by microRNAs (miRNAs), the functional role of specific miRNAs in mammalian lens development remains largely unexplored. Methods: A comprehensive analysis of miRNA transcripts in the newborn mouse lens, exploring both differential expression between lens epithelial cells and lens fiber cells and overall miRNA abundance, was conducted by miRNA sequencing. Mouse lenses lacking each of three abundantly expressed lens miRNAs (miR-184, miR-26, and miR-1) were analyzed to explore the role of these miRNAs in lens development. Results: Mice lacking all three copies of miR-26 (miR-26TKO) developed postnatal cataracts as early as 4 to 6 weeks of age. RNA sequencing analysis of neonatal lenses from miR-26TKO mice exhibited abnormal reduced expression of a cohort of genes found to be lens enriched and linked to cataract (e.g., Foxe3, Hsf4, Mip, Tdrd7, and numerous crystallin genes) and abnormal elevated expression of genes related to neural development (Lhx3, Neurod4, Shisa7, Elavl3), inflammation (Ccr1, Tnfrsf12a, Csf2ra), the complement pathway, and epithelial to mesenchymal transition (Tnfrsf1a, Ccl7, Stat3, Cntfr). Conclusions: miR-1, miR-184, and miR-26 are each dispensable for normal embryonic lens development. However, loss of miR-26 causes lens transcriptome changes and drives cataract formation.


Cataract , Lens, Crystalline , MicroRNAs , Transcriptome , Animals , MicroRNAs/genetics , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Cataract/genetics , Cataract/metabolism , Mice , Mice, Knockout , Animals, Newborn , Disease Models, Animal , Mice, Inbred C57BL
2.
Front Immunol ; 15: 1325868, 2024.
Article En | MEDLINE | ID: mdl-38585265

Background: Many observational studies have been reported that patients with autoimmune or allergic diseases seem to have a higher risk of developing senile cataract, but the views are not consistent. In order to minimize the influence of reverse causality and potential confounding factors, we performed Mendelian Randomization (MR) analysis to investigate the genetic causal associations between autoimmune, allergic diseases and senile cataract. Methods: Single nucleotide polymorphisms associated with ten common autoimmune and allergic diseases were obtained from the IEU Open genome-wide association studies (GWAS) database. Summary-level GWAS statistics for clinically diagnosed senile cataract were obtained from the FinnGen research project GWAS, which consisted of 59,522 individuals with senile cataracts and 312,864 control individuals. MR analysis was conducted using mainly inverse variance weighted (IVW) method and further sensitivity analysis was performed to test robustness. Results: As for ten diseases, IVW results confirmed that type 1 diabetes (OR = 1.06; 95% CI = 1.05-1.08; p = 2.24×10-12), rheumatoid arthritis (OR = 1.05; 95% CI = 1.02-1.08; p = 1.83×10-4), hypothyroidism (OR = 2.4; 95% CI = 1.42-4.06; p = 1.12×10-3), systemic lupus erythematosus (OR = 1.02; 95% CI = 1.01-1.03; p = 2.27×10-3), asthma (OR = 1.02; 95% CI = 1.01-1.03; p = 1.2×10-3) and allergic rhinitis (OR = 1.07; 95% CI = 1.02-1.11; p = 2.15×10-3) were correlated with the risk of senile cataract. Celiac disease (OR = 1.04; 95% CI = 1.01-1.08; P = 0.0437) and atopic dermatitis (OR = 1.05; 95% CI = 1.01-1.10; P = 0.0426) exhibited a suggestive connection with senile cataract after Bonferroni correction. These associations are consistent across weighted median and MR Egger methods, with similar causal estimates in direction and magnitude. Sensitivity analysis further proved that these associations were reliable. Conclusions: The results of the MR analysis showed that there were causal relationships between type 1 diabetes, rheumatoid arthritis, hypothyroidism, systemic lupus erythematosus, asthma, allergic rhinitis and senile cataract. To clarify the possible role of autoimmune and allergy in the pathophysiology of senile cataract, further studies are needed.


Arthritis, Rheumatoid , Asthma , Autoimmune Diseases , Cataract , Diabetes Mellitus, Type 1 , Hypothyroidism , Lupus Erythematosus, Systemic , Rhinitis, Allergic , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , Autoimmune Diseases/epidemiology , Autoimmune Diseases/genetics , Asthma/epidemiology , Asthma/genetics , Cataract/genetics
3.
PeerJ ; 12: e17220, 2024.
Article En | MEDLINE | ID: mdl-38618568

Background: Single nucleotide polymorphisms (SNPs), as the most abundant form of DNA variation in the human genome, contribute to age-related cataracts (ARC) development. Apoptosis of lens epithelial cells (LECs) is closely related to ARC formation. Insulin-like growth factor 1 (IGF1) contributes to cell apoptosis regulation. Moreover, IGF1 was indicated to exhibit a close association with cataract formation. Afterward, an investigation was conducted to examine the correlation between polymorphisms in IGF1 and the susceptibility to ARC. Methods: The present investigation was a case-control study. Venous blood draws were collected from the participants for DNA genotyping. Lens capsule samples were collected to detect mRNA and apoptosis. TaqMan RT-PCR was used to detect IGF1 polymorphism genotypes and qRT PCR was used to detect IGF1 mRNA levels in LECs. LEC apoptosis was evaluated through flow cytometry. The chi-square test was used to compare differences between ARCs and controls of each SNP. Results: We found that the G allele frequency in the IGF1-rs6218 was higher in the ARCs than in the controls. Furthermore, it was observed that the rs6218 GG genotype exhibited a positive correlation to elevated levels of IGF1 mRNA in LECs. The IGF1 mRNA in the LECs and the apoptosis of LECs in nuclear type of ARCs (ARNC) was higher than the controls. Conclusion: The susceptibility to ARC was related to IGF1-rs6218 polymorphism, and this polymorphism is associated with IGF1 expression at the mRNA level. Moreover, apoptosis in LECs of ARNCs was found to be increased.


Cataract , Insulin-Like Growth Factor I , Humans , Insulin-Like Growth Factor I/genetics , Case-Control Studies , Polymorphism, Single Nucleotide/genetics , Cataract/genetics , RNA, Messenger/genetics , DNA
4.
Invest Ophthalmol Vis Sci ; 65(4): 4, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38558092

Purpose: To examine lens phenotypic characteristics in ßA3ΔG91 mice and determine if ßA3ΔG91 affects autophagy in the lens. Methods: We generated a ßA3ΔG91 mouse model using CRISPR/Cas9 methodology. Comparative phenotypic and biochemical characterizations of lenses from postnatal day 0 (P0), P15, and 1-month-old ßA3ΔG91 and wild-type (WT) mice were performed. The methodologies used included non-invasive slit-lamp examination, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot, and immunohistochemical (IHC) analyses to determine the levels of autophagy-related genes and proteins. Transmission electron microscopy (TEM) analysis of lenses was performed to assess organelle degradation and the presence of autophagic vesicles. TUNEL staining was used to determine apoptosis in the lens. Results: Relative to WT lenses, 1-month-old ßA3ΔG91 mice developed congenital nuclear cataract and microphthalmia and showed an early loss of endoplasmic reticulum (ER) in the cortex and attenuation of nuclei degradation. This observation was confirmed by TEM analysis, as was the presence of autophagic vesicles in ßA3ΔG91 lenses. Comparative IHC and RT-qPCR analyses showed relatively higher levels of autophagy markers (ubiquitinated proteins and p62, LC3, and LAMP2 proteins) in ßA3ΔG91 lenses compared to WT lenses. Additionally, ßA3ΔG91 lenses showed relatively greater numbers of apoptotic cells and higher levels of cleaved caspase-3 and caspase-9. Conclusions: The deletion of G91 in ßA3ΔG91 mice leads to higher levels of expression of autophagy-related proteins and their transcripts relative to WT lenses. Taken together, G91 deletion in ßA3/A1-crystallin is associated with autophagy disruption, attenuation of nuclei degradation, and cellular apoptosis in the lens, which might be congenital cataract causative factors.


Cataract , Lens, Crystalline , Mice , Animals , Cataract/genetics , Cataract/metabolism , Lens, Crystalline/metabolism , Blotting, Western , Disease Models, Animal , Autophagy/genetics
5.
Sci Adv ; 10(17): eadl1088, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38669339

A sharp drop in lenticular glutathione (GSH) plays a pivotal role in age-related cataract (ARC) formation. Despite recognizing GSH's importance in lens defense for decades, its decline with age remains puzzling. Our recent study revealed an age-related truncation affecting the essential GSH biosynthesis enzyme, the γ-glutamylcysteine ligase catalytic subunit (GCLC), at aspartate residue 499. Intriguingly, these truncated GCLC fragments compete with full-length GCLC in forming a heterocomplex with the modifier subunit (GCLM) but exhibit markedly reduced enzymatic activity. Crucially, using an aspartate-to-glutamate mutation knock-in (D499E-KI) mouse model that blocks GCLC truncation, we observed a notable delay in ARC formation compared to WT mice: Nearly 50% of D499E-KI mice remained cataract-free versus ~20% of the WT mice at their age of 20 months. Our findings concerning age-related GCLC truncation might be the key to understanding the profound reduction in lens GSH with age. By halting GCLC truncation, we can rejuvenate lens GSH levels and considerably postpone cataract onset.


Aging , Catalytic Domain , Cataract , Glutamate-Cysteine Ligase , Glutathione , Lens, Crystalline , Cataract/pathology , Cataract/genetics , Cataract/metabolism , Animals , Glutamate-Cysteine Ligase/metabolism , Glutamate-Cysteine Ligase/genetics , Mice , Glutathione/metabolism , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Aging/metabolism , Humans , Disease Models, Animal , Mutation , Gene Knock-In Techniques
6.
Genes (Basel) ; 15(4)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38674349

Common age-related eye disorders include glaucoma, cataract, and age-related macular degeneration (AMD); however, little is known about their relationship with age. This study investigated the potential causal relationship between glaucoma and AMD with cataract using genetic data from multi-ethnic populations. Single-nucleotide polymorphisms (SNPs) associated with exposure to cataract were selected as instrumental variables (IVs) from genome-wide association studies using meta-analysis data from BioBank Japan and UK Biobank. A bidirectional two-sample Mendelian randomisation (MR) study was conducted to assess the causal estimates using inverse variance weighted, MR-Egger, and MR pleiotropy residual sum and outlier tests. SNPs with (p < 5.0 × 10-8) were selected as IVs for cataract, primary open-angle glaucoma, and AMD. We found no causal effects of cataract on glaucoma or AMD (all p > 0.05). Furthermore, there were no causal effects of AMD on cataract (odds ratio [OR] = 1.02, p = 0.400). However, glaucoma had a substantial causal effect on cataract (OR = 1.14, p = 0.020). Our study found no evidence for a causal relationship of cataract on glaucoma or AMD and a casual effect of AMD on cataract. Nonetheless, glaucoma demonstrates a causal link with cataract formation, indicating the need for future investigations of age-related eye diseases.


Cataract , Genome-Wide Association Study , Glaucoma , Macular Degeneration , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Humans , Macular Degeneration/genetics , Macular Degeneration/epidemiology , Cataract/genetics , Glaucoma/genetics , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/epidemiology , Genetic Predisposition to Disease , Japan/epidemiology
7.
Mol Vis ; 30: 37-48, 2024.
Article En | MEDLINE | ID: mdl-38586607

Purpose: Congenital cataract affects 1-15 per 10,000 newborns worldwide, and 20,000-40,000 children are born every year with developmental bilateral cataracts. Mutations in the crystallin genes are known to cause congenital cataracts. Crystallins, proteins present in the eye lens, are made up of four Greek key motifs separated into two domains. Greek key motifs play an important role in compact folding to provide the necessary refractive index and transparency. The present study was designed to understand the importance of the fourth Greek key motif in maintaining lens transparency by choosing a naturally reported Y134X mutant human γD- crystallin in a Danish infant and its relationship to lens opacification and cataract. Methods: Human γD-crystallin complementary DNA (cDNA) was cloned into the pET-21a vector, and the Y134X mutant clone was generated by site-directed mutagenesis. Wild-type and mutant proteins were overexpressed in the BL21 DE3 pLysS cells of E. coli. Wild-type protein was purified from the soluble fraction using the ion exchange and gel filtration chromatography methods. Mutant protein was predominantly found in insoluble fraction and purified from inclusion bodies. The structure, stability, aggregational, and amyloid fibril formation properties of the mutant were compared to those of the wild type using the fluorescence and circular dichroism spectroscopy methods. Results: Loss of the fourth Greek key motif in human γD-crystallin affects the backbone conformation, alters the tryptophan micro-environment, and exposes a nonpolar hydrophobic core to the surface. Mutant is less stable and opens its Greek key motifs earlier with a concentration midpoint (CM) of unfolding curve of 1.5 M compared to the wild type human γD-crystallin (CM: 2.5 M). Mutant is capable of forming self-aggregates immediately in response to heating at 48.6 °C. Conclusions: Loss of 39 amino acids in the fourth Greek key motif of human γD-crystallin affects the secondary and tertiary structures and exposes the hydrophobic residues to the solvent. These changes make the molecule less stable, resulting in the formation of light-scattering particles, which explains the importance of the fourth Greek key in the underlying mechanism of opacification and cataract.


Cataract , Lens, Crystalline , gamma-Crystallins , Infant, Newborn , Child , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , gamma-Crystallins/chemistry , Lens, Crystalline/metabolism , Cataract/genetics , Cataract/metabolism , Mutation , Mutagenesis, Site-Directed
8.
Food Funct ; 15(9): 5147-5157, 2024 May 07.
Article En | MEDLINE | ID: mdl-38682722

Age-related eye diseases (AREDs), including age-related cataracts (ARCs), age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma, are a leading cause of visual loss globally. This study aimed to explore the effects of dietary water intake on AREDs using Mendelian randomization. In the European population, genome-wide association study (GWAS) summary statistics of water intake and AREDs were obtained from the UK Biobank database and the FinnGen Consortium, respectively. The causal associations between water intake and ARED risks were explored by univariable and multivariable MR analyses, followed by sensitivity analyses to test the robustness of the results and detect potential pleiotropy bias. Water intake was associated with reduced risks of ARCs (odds ratio [OR]: 0.61; 95% confidence interval [CI]: 0.46-0.83; P = 1.44 × 10-3) and DR (OR: 0.52; 95% CI: 0.36-0.76; P = 5.47 × 10-4), and a suggestive reduced risk of AMD (OR: 0.42; 95% CI: 0.20-0.88; P = 2.18 × 10-2). Water intake had no effect on glaucoma (OR: 1.16; 95% CI: 0.72-1.88; P = 0.549). After adjusting confounders, the causal effects of water intake on ARCs and DR persisted. Our study provides evidence of the preventive role of water intake in ARCs and DR from a genetic perspective.


Drinking , Genome-Wide Association Study , Macular Degeneration , Mendelian Randomization Analysis , Humans , Macular Degeneration/genetics , Macular Degeneration/epidemiology , Male , Female , Aged , Eye Diseases/genetics , Eye Diseases/epidemiology , Cataract/genetics , Cataract/prevention & control , Cataract/epidemiology , Glaucoma/genetics , Glaucoma/epidemiology , Middle Aged , Diabetic Retinopathy/genetics , Diabetic Retinopathy/epidemiology , Diabetic Retinopathy/prevention & control , Polymorphism, Single Nucleotide
9.
Sci Rep ; 14(1): 7353, 2024 03 28.
Article En | MEDLINE | ID: mdl-38548822

The substitution of leucine to proline at position 39 (p.P39L) in human αB-crystallin (αB-Cry) has been associated with conflicting interpretations of pathogenicity in cataracts and cardiomyopathy. This study aimed to investigate the effects of the p.P39L mutation on the structural and functional features of human αB-Cry. The mutant protein was expressed in Escherichia coli (E. coli) and purified using anion exchange chromatography. We employed a wide range of spectroscopic analyses, gel electrophoresis, transmission electron microscopy (TEM), and atomic force microscopy (AFM) techniques to investigate the structure, function, stability, and fibrillation propensity of the mutant protein. The p.P39L mutation caused significant changes in the secondary, tertiary, and quaternary structures of human αB-Cry and increased the thermal stability of the protein. The mutant αB-Cry exhibited an increased chaperone activity and an altered oligomeric size distribution, along with an increased propensity to form amyloid aggregates. It is worth mentioning, increased chaperone activity has important positive and negative effects on damaged cells related to cataracts and cardiomyopathy, particularly by interfering in the process of apoptosis. Despite the apparent positive nature of the increased chaperone activity, it is also linked to adverse consequences. This study provides important insights into the effect of proline substitution by leucine at the N-terminal region on the dual nature of chaperone activity in human αB-Cry, which can act as a double-edged sword.


Cardiomyopathies , Cataract , Crystallins , Humans , Cataract/genetics , Crystallins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Leucine , Molecular Chaperones/metabolism , Mutant Proteins/metabolism , Proline/genetics , Protein Structure, Secondary
10.
Clin Dysmorphol ; 33(2): 63-68, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38441200

Aniridia is an autosomal dominant condition characterized by the complete or partial absence of the iris, often with additional presentations such as foveal hypoplasia, nystagmus, cataract, glaucoma and other ocular abnormalities. Most cases are caused by heterozygous mutations in the paired box 6 gene (PAX6), which codes for a transcription factor that regulates eye development. Four patients from our hospital who presented with ocular phenotypes were recruited for research sequencing with informed consent. Sanger sequencing of PAX6 coding exons or exome sequencing was performed on genomic DNA from venous blood samples. Variants in PAX6 were identified in the four patients. Two variants are recurrent single-nucleotide substitutions - one is a substitution found in a patient with bilateral aniridia, whereas the other is a splice variant in a patient with nystagmus and neuroblastoma. The other two variants are novel and found in two patients with isolated aniridia. Both are small duplications that are predicted to lead to premature termination. For the recurrent variants, the comparison of phenotypes for patients with identical variants would shed light on the mechanisms of pathogenesis, and the discovery of two novel variants expands the spectrum of PAX6 mutations.


Aniridia , Cataract , Humans , Face , Aniridia/genetics , Cataract/genetics , Exons , Asia, Southeastern , PAX6 Transcription Factor/genetics
11.
PLoS One ; 19(3): e0299192, 2024.
Article En | MEDLINE | ID: mdl-38437213

BACKGROUND: Previous studies have indicated a heightened susceptibility to cataract and glaucoma among rheumatoid arthritis (RA) patients, while it remains uncertain whether RA is causally associated with cataract and glaucoma. A two-sample mendelian randomization (MR) analysis was used to investigate the causal associations between RA, cataract and glaucoma in European and East Asian populations. METHODS: In the European population, genome-wide association study (GWAS) summary statistics for cataract (372,386 individuals) and glaucoma (377,277 individuals) were obtained from the FinnGen consortium (R9), while RA summary data were derived from a meta-analysis of GWAS encompassing 97173 samples. In the East Asian population, summary data for cataract (212453 individuals), glaucoma (212453 individuals), and RA (22515 individuals) were sourced from the IEU Open GWAS project. Inverse-variance weighted (IVW, random-effects) method served as the primary analysis, complemented by MR‒Egger regression, weighted median, weighted mode and simple mode methods. Additionally, various sensitivity tests, including Cochran's Q test, MR‒Egger intercept, MR pleiotropy Residual Sum and Outlier test and leave-one-out test were performed to detect the heterogeneity, horizontal pleiotropy and stability of the analysis results. RESULTS: Following stringent screening, the number of selected instrumental variables ranged from 8 to 56. The IVW results revealed that RA had an increased risk of cataract (OR = 1.041, 95% CI = 1.019-1.064; P = 2.08×10-4) and glaucoma (OR = 1.029, 95% CI = 1.003-1.057; P = 2.94×10-2) in European populations, and RA displayed a positive association with cataract (OR = 1.021, 95% CI = 1.004-1.039; P = 1.64×10-2) in East Asian populations. Other methods also supported those results by IVW, and sensitivity tests showed that our analysis results were credible and stable. CONCLUSIONS: This study revealed a positive causality between RA and the increased risk of cataract and glaucoma, which provides guidance for the early prevention of cataracts and glaucoma in patients with RA and furnishes evidence for the impact of RA-induced inflammation on ophthalmic diseases.


Arthritis, Rheumatoid , Cataract , Glaucoma , Humans , East Asian People , Genome-Wide Association Study , Mendelian Randomization Analysis , Glaucoma/epidemiology , Glaucoma/genetics , Cataract/epidemiology , Cataract/genetics , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/epidemiology , Arthritis, Rheumatoid/genetics , Inflammation
12.
Prenat Diagn ; 44(5): 665-668, 2024 May.
Article En | MEDLINE | ID: mdl-38554254

Oculocerebrorenal syndrome (Lowe syndrome) is a rare X-linked disorder affecting 1/500,000 males that most frequently affects the eyes, central nervous system, and kidneys. Phenotypic presentation includes congenital cataracts, developmental delay, intellectual disability, and Fanconi-type renal dysfunction. Lowe Syndrome is caused by hemizygous loss of function variants in the OCRL gene. While individuals may live into the third and fourth decade of life, some will die in the first few years of either renal failure or infection. While early diagnosis is important, few cases have documented the prenatal phenotype of this condition, which has included bilateral cataracts and variable neurological abnormalities. We report a case of a family with an extensive history of congenital cataracts, immune compromise, and neonatal death in male members. The fetus was found to have a unilateral cataract, mild ventriculomegaly, vertebral anomalies, and an underlying diagnosis of Lowe Syndrome with a mutation in OCRL at c.2582-1G>C (IVS23-1G>C).


Cataract , Oculocerebrorenal Syndrome , Phenotype , Humans , Oculocerebrorenal Syndrome/genetics , Oculocerebrorenal Syndrome/diagnosis , Female , Male , Pregnancy , Cataract/congenital , Cataract/diagnosis , Cataract/genetics , Adult , Phosphoric Monoester Hydrolases/genetics , Prenatal Diagnosis/methods , Infant, Newborn
13.
Int J Biol Macromol ; 262(Pt 2): 130191, 2024 Mar.
Article En | MEDLINE | ID: mdl-38360245

Congenital cataract is a major cause of childhood blindness worldwide, with crystallin mutations accounting for over 40 % of gene-mutation-related cases. Our research focused on a novel R114C mutation in a Chinese family, resulting in bilateral coronary cataract with blue punctate opacity. Spectroscopic experiments revealed that ßA3-R114C significantly altered the senior structure, exhibiting aggregation, and reduced solubility at physiological temperature. The mutant also displayed decreased resistance and stability under environmental stresses such as UV irradiation, oxidative stress, and heat. Further, cellular models confirmed its heightened sensitivity to environmental stresses. These data suggest that the R114C mutation impairs the hydrogen bond network and structural stability of ßA3-crystallin, particularly at the boundary of the second Greek-key motif. This study revealed the pathological mechanism of ßA3-R114C and may help in the development of potential treatment strategies for related cataracts.


Cataract , Crystallins , Humans , Crystallins/genetics , Crystallins/metabolism , Cataract/genetics , Cataract/metabolism , Mutation
14.
Chem Biol Interact ; 392: 110905, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38373627

Aldose reductase is a member of the 1B1 subfamily of aldo-keto reductase gene superfamily. The action of aldose reductase (AR) has been implicated in the pathogenesis of a variety of disease states, most notably complications of diabetes mellitus including neuropathy, retinopathy, nephropathy, and cataracts. To explore for mechanistic roles for AR in disease pathogenesis, we established mutant strains produced using Crispr-Cas9 to inactivate the AKR1B3 gene in C57BL6 mice. Phenotyping AR-knock out (ARKO) strains confirmed previous reports of reduced accumulation of tissue sorbitol levels. Lens epithelial cells in ARKO mice showed markedly reduced epithelial-to-mesenchymal transition following lens extraction in a surgical model of cataract and posterior capsule opacification. A previously unreported phenotype of preputial sebaceous gland swelling was observed frequently in male ARKO mice homozygous for the mutant AKR1B3 allele. This condition, which was shown to be accompanied by infiltration of proinflammatory CD3+ lymphocytes, was not observed in WT mice or mice heterozygous for the mutant allele. Despite this condition, reproductive fitness of the ARKO strain was indistinguishable from WT mice housed under identical conditions. These studies establish the utility of a new strain of AKR1B3-null mice created to support mechanistic studies of cataract and diabetic eye disease.


Capsule Opacification , Cataract , Lens, Crystalline , Animals , Male , Mice , Aldehyde Reductase/genetics , Capsule Opacification/pathology , Cataract/genetics , Cataract/pathology , Incidence , Inflammation/pathology , Lens, Crystalline/pathology , Mice, Inbred C57BL , Mice, Knockout , Sebaceous Glands
15.
J Hum Genet ; 69(3-4): 145-152, 2024 Apr.
Article En | MEDLINE | ID: mdl-38332109

Intellectual disability (ID) is associated with an increased risk of developing psychiatric disorders, suggesting a common underlying genetic factor. Importantly, altered signaling and/or expression of regulator of G protein signaling 6 (RGS6) is associated with ID and numerous psychiatric disorders. RGS6 is highly conserved and undergoes complex alternative mRNA splicing producing ~36 protein isoforms with high sequence similarity historically necessitating a global approach in functional studies. However, our recent analysis in mice revealed RGS6 is most highly expressed in CNS with RGS6L(+GGL) isoforms predominating. A previously reported genetic variant in intron 17 of RGS6 (c.1369-1G>C), associated with ID, may provide further clues into RGS6L(+GGL) isoform functional delineation. This variant was predicted to alter a highly conserved canonical 3' acceptor site creating an alternative branch point within exon 18 (included in a subset of RGS6L(+GGL) transcripts) and a frameshift forming an early stop codon. We previously identified this alternative splice site and demonstrated its use generates RGS6Lζ(+GGL) isoforms. Here, we show that the c.1369-1G>C variant disrupts the canonical, preferred (>90%) intron 17 splice site and leads to the exclusive use of the alternate exon 18 splice site, inducing disproportionate expression of a subset of isoforms, particularly RGS6Lζ(+GGL). Furthermore, RGS6 global knockout mice do not exhibit ID. Thus, ID caused by the c.1369-1G>C variant likely results from altered RGS6 isoform expression, rather than RGS6 isoform loss. In summary, these studies highlight the importance of proper RGS6 splicing and identify a previously unrecognized role of G protein signaling in ID.


Cataract , Intellectual Disability , Microcephaly , RGS Proteins , Animals , Humans , Mice , Cataract/genetics , GTP-Binding Proteins/genetics , Intellectual Disability/genetics , Microcephaly/genetics , Protein Isoforms/genetics , RGS Proteins/genetics , RGS Proteins/metabolism , RNA Splice Sites
16.
Exp Eye Res ; 241: 109817, 2024 Apr.
Article En | MEDLINE | ID: mdl-38340945

Previous studies have shown that the development of age-related cataract (ARC) is involved in lens epithelium dysfunction, which is associated with abnormally expressed circular RNAs (circRNAs). The current work aims to probe the role of circSTRBP (hsa_circ_0088,427) in hydrogen peroxide (H2O2)-induced lens epitheliums. Lens epithelium tissues were harvested from ARC or normal subjects (n = 23). CircSTRBP, spermatid perinuclear RNA binding protein (STRBP), and nicotinamide adenine dinucleotide phosphate oxidase subunit 4 (NOX4) levels were measured using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell proliferation, cycle progression, and apoptosis were assessed using 5-ethynyl-2'-deoxyuridine (EdU), Cell Counting Kit-8 (CCK-8), and flow cytometry assays. Caspase 3 activity, reactive oxygen species (ROS), malondialdehyde (MDA), and Glutathione peroxidases (GSH-PX) levels were detected using corresponding kits. NOX4 protein level was determined using Western blot. The interaction between insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) and circSTRBP or NOX4 was assessed through RNA immunoprecipitation (RIP). CircSTRBP and NOX4 abundances were increased in lens epithelium samples from ARC patients and H2O2-treated SRA01/04 cells. CircSTRBP knockdown might abolish H2O2-triggered SRA01/04 cell proliferation repression and apoptosis and oxidative stress promotion. In mechanism, circSTRBP is bound with IGF2BP1 and improves the stability and expression of NOX4 mRNA in SRA01/04 cells. CircSTRBP facilitated H2O2-induced SRA01/04 cell apoptosis and oxidative stress through by enhancing NOX4 mRNA stability via recruiting IGF2BP1, providing novel insights for ARC progression and treatment.


Cataract , Lens, Crystalline , MicroRNAs , Humans , Hydrogen Peroxide/toxicity , Hydrogen Peroxide/metabolism , Oxidative Stress , Lens, Crystalline/metabolism , Apoptosis , Cataract/genetics , Cataract/metabolism , Epithelium/metabolism , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , MicroRNAs/genetics
17.
Chem Biol Drug Des ; 103(2): e14491, 2024 02.
Article En | MEDLINE | ID: mdl-38404215

N6-methyladenosine (m6 A) modification has been reported to have roles in modulating the development of diabetic cataract (DC). Methyltransferase-like 3 (METTL3) is a critical m6 A methyltransferase involving in m6 A modification activation. Here, we aimed to explore the action and mechanism of METTL3-mediated maturation of miR-4654 in DC progression. Human lens epithelial cells (HLECs) were exposed to high glucose (HG) to imitate DC condition in vitro. Levels of genes and proteins were tested via qRT-PCR and western blotting assays. The proliferation and apoptosis of HLECs were evaluated by cell counting kit-8, 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays, respectively. Oxidative stress was analyzed by detecting the contents of reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA). The binding of miR-4654 and SOD2 was confirmed by dual-luciferase reporter assay. The m6 A-RNA immunoprecipitation (MeRIP) assay detected the m6 A modification profile. Thereafter, we found that miR-4654 expression was elevated in DC samples and HG-induced HLECs. MiR-4654 knockdown reversed HG-mediated apoptosis and oxidative stress in HLECs. Mechanistically, miR-4654 directly targeted SOD2, silencing of SOD2 abolished the protective effects of miR-4654 knockdown on HLECs under HG condition. In addition, METTL3 induced miR-4654 maturation through promoting pri-miR-4654 m6 A modification, thereby increasing miR-4654 content in HLECs. METTL3 was highly expressed in DC samples and HG-induced HLECs, METTL3 deficiency protected HLECs against HG-mediated apoptotic and oxidative injury via down-regulating miR-4654. In all, METTL3 induced miR-4654 maturation in a m6 A-dependent manner, which was then reduced SOD2 expression, thus promoting apoptosis and oxidative stress in HLECs, suggesting a novel path for DC therapy.


Cataract , Diabetes Complications , MicroRNAs , Superoxide Dismutase , Humans , Apoptosis , Cataract/genetics , Cataract/metabolism , Epithelial Cells/metabolism , Glucose/pharmacology , Glucose/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Oxidative Stress/genetics , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
19.
J Cell Physiol ; 239(5): e31211, 2024 May.
Article En | MEDLINE | ID: mdl-38304971

Cataract, a leading cause of blindness, is characterised by lens opacification. Type 2 diabetes is associated with a two- to fivefold higher prevalence of cataracts. The risk of cataract formation increases with the duration of diabetes and the severity of hyperglycaemia. Hydroxyapatite deposition is present in cataractous lenses that could be the consequence of osteogenic differentiation and calcification of lens epithelial cells (LECs). We hypothesised that hyperglycaemia might promote the osteogenic differentiation of human LECs (HuLECs). Osteogenic medium (OM) containing excess phosphate and calcium with normal (1 g/L) or high (4.5 g/L) glucose was used to induce HuLEC calcification. High glucose accelerated and intensified OM-induced calcification of HuLECs, which was accompanied by hyperglycaemia-induced upregulation of the osteogenic markers Runx2, Sox9, alkaline phosphatase and osteocalcin, as well as nuclear translocation of Runx2. High glucose-induced calcification was abolished in Runx2-deficient HuLECs. Additionally, high glucose stabilised the regulatory alpha subunits of hypoxia-inducible factor 1 (HIF-1), triggered nuclear translocation of HIF-1α and increased the expression of HIF-1 target genes. Gene silencing of HIF-1α or HIF-2α attenuated hyperglycaemia-induced calcification of HuLECs, while hypoxia mimetics (desferrioxamine, CoCl2) enhanced calcification of HuLECs under normal glucose conditions. Overall, this study suggests that high glucose promotes HuLEC calcification via Runx2 and the activation of the HIF-1 signalling pathway. These findings may provide new insights into the pathogenesis of diabetic cataracts, shedding light on potential factors for intervention to treat this sight-threatening condition.


Cell Differentiation , Core Binding Factor Alpha 1 Subunit , Epithelial Cells , Glucose , Hypoxia-Inducible Factor 1, alpha Subunit , Lens, Crystalline , Osteogenesis , Humans , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Cell Differentiation/drug effects , Osteogenesis/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Glucose/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Osteocalcin/metabolism , Osteocalcin/genetics , Cataract/pathology , Cataract/metabolism , Cataract/genetics , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Calcinosis/metabolism , Calcinosis/pathology , Calcinosis/genetics , Hyperglycemia/metabolism , Hyperglycemia/genetics , Hyperglycemia/pathology , Signal Transduction , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/genetics , Cells, Cultured
20.
Sci Rep ; 14(1): 4123, 2024 02 19.
Article En | MEDLINE | ID: mdl-38374148

Although cataract is the leading cause of blindness worldwide, the detailed pathogenesis of cataract remains unclear, and clinically useful drug treatments are still lacking. In this study, we examined the effects of glutamate using an ex vivo model in which rat lens is cultured in a galactose-containing medium to induce opacity formation. After inducing lens opacity formation in galactose medium, glutamate was added, and the opacity decreased when the culture was continued. Next, microarray analysis was performed using samples in which the opacity was reduced by glutamate, and genes whose expression increased with galactose culture and decreased with the addition of glutamate were extracted. Subsequently, STRING analysis was performed on a group of genes that showed variation as a result of quantitative measurement of gene expression by RT-qPCR. The results suggest that apoptosis, oxidative stress, endoplasmic reticulum (ER) stress, cell proliferation, epithelial-mesenchymal transition (EMT), cytoskeleton, and histones are involved in the formation and reduction of opacity. Therefore, glutamate may reduce opacity by inhibiting oxidative stress and its downstream functions, and by regulating the cytoskeleton and cell proliferation.


Cataract , Lens, Crystalline , Rats , Animals , Galactose/metabolism , Glutamic Acid/metabolism , Cataract/chemically induced , Cataract/genetics , Lens, Crystalline/metabolism , Apoptosis , Epithelial Cells/metabolism
...